Modeling and Measuring Software Component Architecture in SysML

Please send questions/comments to DigitalEngineering@saic.com

Introduction

Systems Engineers are responsible for producing requirements, including software requirements. This
paper describes a method for developing, modeling, and measuring software requirements in a Model
Based Systems Engineering (MBSE) environment using Systems Modeling Language (SysML). The output
of the method is called a software component architecture.

This paper will demonstrate how to construct a software component architecture in SysML using the
IFPUG method to perform the Systems Engineering process of Software Functional Analysis. This
Analysis activity pertains directly to the CMMI Process Areas of Requirements Development,
Measurement and Analysis, and Estimation.

Background

SysML is a language for Systems Engineers that supports the analysis and specification of a System using
partitions called Blocks as elements of its composition.

e Blocks are modular units of system description.

e Blocks provide a general-purpose capability to model systems as trees of modular components.
0 These include modeling either the logical or physical decomposition of a system, and the
specification of software, hardware, or human elements

The language was developed by leveraging certain concepts from the Unified Modeling Language (UML).

UML is a language that supports the specification of Software Systems. SysML a derivative, or dialect of
UML, with extensions, to precisely capture characteristics of a System that do not necessarily pertain to
software.

Our goal is to identify the Blocks that represent Software Components, as these are the elements that
comprise the Software Functional Architecture. We then apply software engineering best practices to
the specification, measurement, and analysis of the set of Blocks that represent the “modular
components of software” in the System.

Software Architecture

Software Architecture is an organization of software components that comprise a software system. The
modeling elements required to produce a Software Architecture are: Components, Interfaces, and Data
Types.

As defined in UML 2.5.1, these architectural elements represent “a set of constructs that can be used to
define software systems of arbitrary size and complexity.”

“[A] Component [specifies] a modular unit with well-defined Interfaces that is
replaceable within its environment. The Component concept addresses the area of
component-based development and component-based system structuring, where



a Component is modeled throughout the development life cycle and successively
refined into deployment and run-time.” - UML 2.5.1

The following illustration depicts a UML Component and its provided Interface, using two common
notations.

package Suﬂware[iéf; UML MNotation Component and Interface | ]

Calculator

e Calcijlator
+add( a : Real, b : Real ) : Real
+5ub( a : Real, b : Real ) : Real
+mul(&: Real, b: Real ) : Real
+divi a: Real b: Real ) : Real

m
[ | 1™y
i | i |
| interface realization Notation | vk dintevince Noton
_ iipop Notation) |
i -
«Components «components T ||
Calculator

Calculator

~divi & : R

+add( a : Real, b Real ) : Real |
+sub( & ; Real, b: Real ) : Real |
+mul{ & : Real, b : Real ) : Real
b:Real ) : Real

|+add( a : Real, b : Real ) : Real
|+sub(a: Real, b Real ) : Real
|+mul{ & : Real, b : Real ) : Real
|+div( & : Real b : Real }: Real

|
|
|
|
|
|
|
|
| | (aka "Loliipop Motation) |
|
|
|
|
|
|
| prow |
Calculator |

|calcumtor

From the software engineering perspective, the Component specifies what is what is built, tested, and
deployed. This represents the Software Boundary, from the Measurement Perspective. The Interface
specifies what the component does, in terms of Operations.

The Component Operations represent the implementation of the Interface Operations. There must be a
Component Operation that corresponds with each Interface Operation.

In summary,

e Software Components and Interfaces are well-defined UML modeling elements that are used to
construct “Software Component Architectures.”

Software Component Architectures are the result of a Software Engineering best-practice for
specifying complex software systems.

Software Component Architectures have the following Characteristics:

=  Modular

=  Flexibly deployed
= High Cohesion

= Reusable

= Manageable

=  Measurable



Meta Model Analysis
Unfortunately SysML did not adopt the UML Component as a modeling element, as shown in the
following illustration. Note that this expression is a view of the Cameo/MagicDraw Meta Model.

Profile Diagram IFPUG[ E] Key SysWL Software Modeling Elements ]J
|’Sys_l-1Lﬁud_eling_EIEEenE ______ 3
| |
aletaclasss E. _Block_base_Class | zstereotypes =] I
umML Profile:UML2 | SysML:Blocks:: |
Class Block |
T | [Class] |
| at) 3
| +isEncapsulated : Boolean [0..1] |
aMetaclassy
= " | |
LD BoHeM.2 SysML did not adopt the Component from Urh |
Component | |
|
| wsterectyper [@
«Metaclassy E_extension_ValueType_base_DataType | SysML:Blocks: |
UML Standard ProfileUML2 Valn‘l‘z'rype : |
DataTs |
ype | s [DataType] |
|
|
|
|
|
«Metaclassa aMetaclassa | T
UML Standard Profile::UML2 Metamodel: UML Standard Profile::UML2 Metamodet: | ML Profiie::UML2 W I
PrimitiveType Enumeration | Interh |
|
|
| |
liustration of SysML modeling elements and their relationshipg oo~~~ ... — = — - —- - - — — — — — ol
Blocks are an extension of UML Classes, ValueTypes are an extension of UML DataTypes.
Interfaces have the same semantics in SyshL, as they do in UML.
SyshIL did not adopt the Component from UKL, sadly this makes modeling software a challenge when using SysML. —Chuck Wesolowski 2022

Consequently, the specification of Software Requirements and Architecture is sometimes unclear in
SysML models. This situation is easily cured by the introduction of the Software Component stereotype.
When applied to a SysML Block, this stereotype gives the semantics of a UML Component to the Block.

Profile Diagram IFPUG] @] Software Component Stereotype }J

i
| |
sMetaclasss T _Block_bass_Class | astereotypes =] [
UML Profile:UML2 | SysML:Blocks: |
Class Block |
T —H [Class] |
| at ]
+isEncapsulated : Boolean [0..1] |
sMetaclassy esemantics wstersotypes |
umL Profile::UML2 g — o — T — 3 Software Component | |
Component [Class] | |
‘ fercotypey [ l
ustereotypes
shletaciasss E_extension_\alueType_base_DataType | SyshL:Blocks:: |
UML Standard Profile:UML2 Valu‘l‘aTypa b |
Ewalyps ; [DataType] |
|
|
|
‘ |
«Metaciassy «Metaclassy I T
UML Standard Profile::UML2 Metamodel: UML Standard Profile::UML2 Metamodel: | UML Standard Profile-UML2 Metamodek: I
PrimitiveType Enumeration | inte i i |
| |
|
|

llustration of Software Component stereotype.
This stereotype is applied to a SysML Block to indicats a Software Component.

A Block stereotyped as a Software Companent indicates that it has the same semantice of a UML Component.
—Chuck Wesclowski 2022




Software Component Stereotype

The Software Component stereotype provides the way to distinguish between software, and the
“hardware, and human elements,” that a SysML Block can represent in the “trees of modular
components” that comprise a system. Furthermore, because a Software Component Block is
semantically identical to a UML Component, software engineering methods and best-practices
developed for UML Components can be applied to the SysML Block.

bdd [Block] Calculstor] Calculator with Interfaces ]J_J

wblocks |

«Software Components SysML Software Cumpuneﬁtq
Calculator :

add( a : Real b: Real ) : Real
sub(a:Real b:Real):Realp - — — — — — — — — |
mul{ a: Real, b : Real ) ; Real
div(a: Real, b: Real): Real 47

| Calculator

T § nperafions
ik § | +add( a : Real, b : Real ) : Real

Generalization expresses "is 8" relstionship. e Inte.rfac;] +zub( a - Aeal b - Real ) - Real

I{ a:Real b:Real ): Real
A UML Component “is 8" SyshL Software Component | —_— :{;3{:: R::I, 5 P.::I ) R:aﬂl
zcomponents =
Calculator | _________ I

+add( a: Real b Real): Reall
+sub( a : Real, b : Real ) : Real | 1
+mull & : Real, b Real ) : Real | L

=div( a - Real, b: Real ) Re=al | UKL Software Cumpnnenq

The stereotype provides a means to translate between the modeling languages. It adds a “word” to the
SysML vocabulary that already has a precise meaning in the parent language of UML.

Notice that the Interface, which has the same meaning in both SysML and UML, is noted as a Software
Interface. It is often called a “Functional Interface” as it captures the functionality available to the User.
It is not to be confused with a SysML Interface Block, which is often called an “Interface” in SysML
parlance.

Software Functional Analysis and Architecture

Functional Analysis of software systems is an iterative process that specifies the required behavior of
software components. The set of required behaviors and data required to support the behavior,
constitutes the software functional requirements of the software component.

Software Functional Analysis preceded both UML and SysML, and has been practiced for decades, using
many methods and techniques for documenting the resultant software functional architecture. The
purpose of Software Functional Analysis is not only to specify quality software functional requirements,
but also to measure these requirements.

Fortunately, UML and SysML provide a simple way to express the essential elements of software
functional architectures, using surprisingly few modeling elements that clearly relate to the vocabulary
of Software Functional Analysts and Measurement Specialists.



Software Functional Analysis involves the identification of a Boundary that encapsulates the Elementary
Processes of the software. The following diagram illustrates these ideas using Jacobsen Robustness
Classes, to indicate the Boundary and the Elementary Processes, as well as a fully specified SysML
Software Component.

class Calculamr[@ Functional Analysis — Boundaries and Eementary Processes ]J

|
|
|
|
|
|

Y = . Y

3.9 Boundary — conceptual interface between the i = |3.21 Elementary Process —smallest unit of |

software under study and its users — = | activity that is meaningful to the user

- 5 1

e A B e B

—_— @& - |

|

|

|

|

|

«ablockn
«Software Components
Calculator

______ <<Software Component>> applied to Block |

5 Euﬁ(a :Real b:Real ) : Real
ssub{ a : Real, b : Real ) : Real <<Elementary Process== applied to Operations !

cessamul( @ - Real b : Real ) : Real
essadiv( a: Real, b : Real ) - Real

—Chuck Wesolowski 2022

Note that the Operations of a SysML Software Component are stereotyped as Elementary Processes.

An Elementary Process represents a functional requirement. It is analyzed and measured to yield its
Functional Size in Function Points (FP). This Measurement and Analysis is conducted from a “Black Box,”
or logical view of the Boundary, without regard to Non-Functional, or Technical Requirements.

Quick Guide to Software Requirements
Functional Requirement
What does it do? (name, description)
What does it need? (inputs , memory references)
What does it produce? (outputs, memory updates)
What can go wrong? (errors)

Non-Functional Requirement
How many ...?
How much ...?
How fast ...?
How often ...?
When ...?

The SysML Operation captures the inputs and outputs of the required behavior as “parameters,” and the
possible error conditions as “raised exceptions.” These are data types that “cross the boundary”
between the user and the software. These data types form the “Transactional Data Model,” as they
form the set of Data Types exchanged via the Component’s Interface.



We turn our attention now to two specific questions from our Quick Review of Software Functional
Requirements.

What does it need? (inputs , memory references)
What does it produce? (outputs, memory updates)

We know that inputs and outputs are contained in the operation signature, but what about memory
references and updates?

Software Functional Analysts refer to “memory references and updates” as “Persistent Data,” meaning
any data read or written from any type “storage” during the execution of an Elementary Process. Data
“persists” from the analyst’s view in “Logical Files.” All Logical Files are forms of Persistent Data.

The following illustration depicts a Calculator with Memory.

class Memory Calculator[ [F) Memery Calculstor — Funchional Analysis Model Elements — Jacobsen Notation | |

Behavior Persistent Data

©

add

Transactional Data

©

sub

| i
iEuunL!ary:

mul

Memory Calculator

I
div

Logical File

store

Memory

&

~recall

-

!Elementary Focess | —Chuck Wesolowski 2022

A Logical File represents user relevant data, irrespective of technical, or other non-functional
considerations. It matters not if the Logical File represents RAM in an embedded system, or relational
database tables in an enterprise system.

A rule of thumb is: If the user can query it, and it can change from one query to the next, it is “Persistent
Data.”

The SysML Specification of the Memory Calculator Software Component is indicated below.



class Memory CﬂlCUlEtDr[Ei Logical File Example ] |

wblocks
«Software Components
Calculator
wvalueTypes
«Logical Files
Memory
\.fﬂll.ie er:'\ETi':l-I
xblocks

wSoftware Components
Memory Calculator

iry Process»add( a : Real, b : Real) : Real
sx8ub(a: Real b: Real): Real
swmull & : Real, b : Real ) : Real
sudiva ! Real, b ! Real ) ! Real
»storel value : Real } 5=
szarecall() : Realjguery, reads

> > > >

Note first, that Memory Calculator inherits four Elementary Processes from the Calculator Component.
These are indicated with a “*” preceding the Operation. Notice too, the properties displayed for the
store() and recall() operations. The “reads” and “writes” properties are extensions provided by the
Elementary Process Stereotype; “query” is a standard property of a SysML Operation.

IFPUG4SysML Profile

The IFPUGA4SysML Profile supports Software Functional Measurement and Analysis by providing
Stereotypes that identify key software elements in a SysML model.

Functional Analysis Element \ SysML Model Element \ SysML Stereotype
Boundary Block <<Software Component>>
Elementary Process Operation <<Elementary Process>>
Logical File ValueType <<Logical File>>

SysML model elements that bear these stereotypes are subject to a set of validation rules for the setting
of certain element properties.

The profile supports Ul Customizations to facilitate the application of the Stereotypes to the appropriate
SysML Elements using the “quickApplyingFor” feature, indicated in the following Profile Diagram.

This means that the User can right-click on the modeling element in the Containment Tree or a Diagram
to control the application of the stereotype.

The Quick Apply Feature is supported in Cameo/MagicDraw Modeling Tool.



Profile Diagram FPUG] [g3| FPUG#SysNL Profie 1)

Software Boundary Elementary Process Persistent Data

«Customizations T «Customizations £ «Customizations 2,
Software Component Elementary Process i
customizationTarget = <> Software Component customizationTarg Elementary Process customization
quickApplyingFor = ElBlock quickApplyingFor = Zl0peration quickApplyingFor = [EDataType

estereotypes «stereotypes «stereotypes
Software Component Elementary Process Logical File
[Class] [Operation] [DataType]

aMetaclasss 3 aMetaclasss aMetaclasss
Component «semantics Operation DataType

astersotypes Q wstersotypes [M]
Block ValueType
[Class] [DataType]

*'LEEHDEpSul-EiEh ‘Boolean [0.1]

—Chuck Wesolowski 2022

Process for Specifying a Software Component

The following Activity Diagram describes the Systems Engineering Process for specifying a Software
Component in SysML.

activity Specify SysML Software Component[ E‘ Specify SysML Software Component ]) ,

[
I 777777 McCabe CCM:2

;L | | |
[ Create Block | L — — — |Actions: 8 — — — — |Actions: 2
L McCabe CCM: 5 McCabe CCM: 3

Apply Software Camponent
| Stercotype |

i [not Done]

Create

[ Inot Donz] Create Block | |
Operation | ValueType

, N __,I [is logical fils] [ Apply Logical
i File Stereotype

Specify Specify Specify query
Parameters | Exceptions | *atiribute

gé &

Apply Elementary Process
| Stereotype J

Specify File Types

All Software Component Operations shall bear the Elementary Process stereotype. All File Types
Referenced by the “reads” or “writes” properties of an Elementary Process shall bear the Logical File
stereotype. Model validation rules enforce these requirements.



Software Functional Size

Software Functional Size is a way of quantifying the results of the Software Functional Analysis process.
Each Software Component in measured independently for Functional Size.

A “Function Point Count,” is the common name for executing the IFPUG Standard Functional Size
Measurement Method on a set of Software Functional Requirements and reporting the results.

Functional Sizing is quite simple provided that the required information is present. SysML provides an
ideal mechanism for organizing Software Functional Requirements in a manner that facilitates
Functional Sizing. The precision of specification inherent in the use of a formal modeling language
enables us to use Cameo/MagicDraw Validation Rules to issue warnings and errors, when violations in
model construction, or IFPUG counting rules are detected.

The following Table shows all SysML modeling elements required to conduct a Function Point Count of a
Software Component.

Criteria

Element Type: | Elementary Process Scope (optional): | Memory Calculator, Calculator Filter: | "=
Basis of Functional Measurement -- SysML Modeling Elements:
£ | 4 Owner MName Parameters | Errors Reads Writes Documentation
@ ina:Rea [ Overflow Perform the arithmetic addition (3+b) and
1 |E caloulator O add © inb:Real return the result.
< return : Real
. @ ina:Rea .|1| Cverflow | | |Perform the arithmetic divisian (2/b) and
2 |E calalator O div © inb:Real DivideByZero return the result. Catch Divide By Zero
< return : Real
. @ ina:Rea .|1| Cverflow | | |Perform the arithmetic multiplication (20}
3 |E calalator O mul & inb:Real and return the result.
< return : Real
|© na:Rea .|1| Overflow | | |Perform the arithmetic subtraction (a-h) and
4+ |E caloulator @ sub © inb:Real return the result,
< return : Real
5 Q Memory Calculator . & recall . @ return value : Real .EI MemoryError .EI Memory . |Return the value of Memary
[ Q Memory Calculator | < store | @ invalue : Real . MemaryError | .E| Memory |Store the input value in Memory

The Scope of the Count includes the Calculator and Memory Calculator Software Components. Note that
the Key for the Element Type in the Table criteria is Elementary Process.

The IFPUGA4SysML profile includes software to automatically count and report the Functional Size of a
software boundary indicated by a SysML Software Component Block.

The software constructs a Measurement Model in the Software Component’s Containment Tree. The
Measurement Model is transient, and may be regenerated on-demand. The purpose of the model is to
present a perspective that is especially useful in managing the life-cycle of Software Components in
terms of their Functional Requirements.

The measurement model is composed of Jacobson Robustness Classes stereotyped to indicate the
Software Boundary, Elementary Processes, and Logical Files. These are called the Base Functional
Components (BFC) of the Measurement Model.

The following Table View is available as part of the IFPUG4SysML Profile. It contains the results of the
Functional Size Measurement of the Software Boundaries specified in the Scope.



Criteria

Element Type: | Boundary,ELEIF,EQ,EQ,ILF Scope (optional): | Memory Calculator, Calculator | Filts
IFPUG Functional Size Report:

£ | . Owner | Name | ec | f | wc | orc | oer | FR | RET

1 |H Calaator B calculator Boundary |16 16 0

6 Q Memory Caloulator .EI . Memory Calculator |Boundar .29 .22 .?

7 . Memory Caloulator Q Memory |F .? . . .1 ' .1

B . Memary Caloulator . @ store E 3 . . 3 1 .

L . Memary Calculator . @ recall |Ec E E 1

10 . Memary Calculator . @ add E .4 .5 'EI

11 . Memary Calculator . @ sub BO s s o

12 . Memary Calculator @ mul |E 4 ls D

13 . Memary Calculator . @ div E .4 .5 'D

This view reports the Measurements and Metrics that represent the Functional Size of the Software.
Results are reported throughout the software lifecycle beginning with Requirements Analysis. Changes
in Requirements are reflected in both the measurements, and the Functional Size.

The Function Point Metric

Function Points represent the Functional Size of the SysML Software Component. The Transactional
Function Contribution (TFC), is the sum of the Function Points contributed by each Elementary Process.
The Data Function Contribution (DFC) is the sum of the Function Points contributed by each Logical File.

The Functional Size is expressed in Function Points (FP). Function Points are a Metric, meaning that they
are derived from measurements. Each BFC in the Measurement Model has a Functional Size expressed
in FP, however only the Functional Size of Elementary Processes and Logical Files are derived from
measurements.

These measurements are made by counting characteristics of the Functional Architecture. These include
the numbers of Data Element Types, references to Logical Files, and Record Element Types, indicated in
the table as DET, FTR, and RET respectively.

DET counts apply to both Elementary Processes and Logical Files. FTR is unique to Elementary Processes,
and RET is unique to Logical Files. The details of the process are documented in the Appendices.

Summary

Software Component Architectures are produced as a result of the Requirements Development
Engineering process. This paper described a method for constructing Software Components in SysML.

Blocks that represent software in a SysML model are clearly indicated using the Software Component
stereotype. This stereotype indicates that the SysML Block represents a UML Component in the model.

Each Block Operation on a Software Component is stereotyped as an Elementary Process. This
stereotype enables the analyst to specify read and write references to structured Value Types
stereotyped as Logical Files.

The Functional Size of a Software Component is reported from a Measurement Model of the Software
Component that is generated on-demand within the modeling tool (Cameo). The profile includes pre-
defined tables for reviewing the results.



Appendix A.

The following BPMN Diagram describes the process of a Software Systems Engineer specifying a
Software Component using the SW4SysML Profile in Cameo.

Software Systems Engineer

Specify Software Component

Create Software Interface

Create Software Component

Create Elementary Process

Create Data Type.

Create Interface

[ 2 Apply <<Software Inferface>>
st

)

© Apply <<Softwarc Component>
Stereotype

tereatype

Y s

 SoftwareComponent

E;wn <<Elementary Process~>

is applied to all owned Operations

assert Softwarelnterface is
realized by SoftwareComponent

export

8 Create Block Operation

assert <<IDLType=» applied
to valueTy pes or signals

& l

[a Specify ..a..e.,]

(@memims) (@)

|

|

8 Avply <Elomentary Process>>
Stereotype

+

The Elementary Process stersotype
provides properties thal support the
*| specification Interfaces and Logical
Files associated with the Operation

: Softwarelnterface

(& swooty meriaces |

reads

Signals are considered Data
Types in the Logical Model

+

I - ye——

2 Apply <ciDLType>>
Stereotype

ic a parameter

or raised
is read or
written by
Elementary
Process

exception of an
Elementary
Process

5 Apply <<Logical File>>
StereaType

1§ Specily File Types Ret
(FTR)

+
$

ferenced
in the reads and writes
properties of the aperation

o

writes.

)
: LogicalFile

o+




